Module6/Lesson3

Module 6: Two Dimensional Problems in Polar
Coordinate System

6.3.1 BARSWITH LARGE INITIAL CURVATURE

There are practical cases of bars, such as hooks, links and rings, etc. which have large initial
curvature. In such a case, the dimensions of the cross-section are not very small in
comparison with either the radius of curvature or with the length of the bar. The treatment
that follows is based on the theory due to Winkler and Bach.

6.3.2 WINKLER’S-BACH THEORY

Assumptions

1. Transverse sections which are plane before bending remain plane even after bending.

2. Longitudinal fibres of the bar, parallel to the central axis exert no pressure on each other.

3. All cross-sections possess a vertical axis of symmetry lying in the plane of the centroidal
axis passing through C (Figure 6.11)

4. The beam is subjected to end couples M. The bending moment vector is normal
throughout the plane of symmetry of the beam.

Winkler-Bach Formula to Determine Bending Stress or Normal Stress (Also known as
Circumferential Stress)

Y dA
Straight
beam
Centroidal axis C y h X
_ Neutral axis V1 / e /
y 1/ urved
M B beam

(b)

Figure 6.11 Beam with large initial curvature
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Consider a curved beam of constant cross-section, subjected to pure bending produced by
couples M applied at the ends. On the basis of plane sections remaining plane, we can state
that the total deformation of a beam fiber obeys a linear law, as the beam element rotates
through small angle Ad6. But the tangential strain &, does not follow a linear relationship.

The deformation of an arbitrary fiber, gh = 5, RA0 + yAdo

where & denotes the strain of the centroidal fiber

But the original length of the fiber gh = (R +y) do

RdO + yAdo
Therefore, the tangential strain in the fiber gh = g = L= s ]
(R+y)deo

Using Hooke’s Law, the tangential stress acting on area dA is given by
e.R+y(AdO/do) £

6.61
(R+y) (661

Oy =

Let angular strain Adg =1
deo

Hence, Equation (6.61) becomes
g, R+yA
(R+y)
Adding and subtracting ¢y in the numerator of Equation (6.62), we get,

Op —

E (6.62)

Op —

eR+YA+e y—ey
E
(R+y)
Simplifying, we get

05 = {gc +(A- gc)ﬁ}E (6.63a)

The beam section must satisfy the conditions of static equilibrium,
F, = 0and M, =0, respectively:

- [o,dA=0 and [o,ydA=M (6.63b)

Substituting the above boundary conditions (6.63b) in (6.63a), we get
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0= j{g +(h-g,) (RI deA

or [¢,dA= —(z-gc)j(RLdA

+Y)

or gCIdA:—

(6.63¢)

Also,

y2
M=|eg | ydA+(L—¢,) dA}E (6.63d)
{ J J (R+y)
Here IdA = A, and since y is measured from the centroidal axis, I ydA=0.

y
Let | ———dA=—-mA
° I(R+y) "

dA

_ 1 y
Orm=- KI N y)
Therefore, .[ y) dA= I{ Rriyy)jdA

= [ ydA- j Ry dA

R+y
=0-R[-mA]

2
| Y dA=mRA
(R+y)

Substituting the above values in (6.63c) and (6.63d), we get,
g&=(A-g)m
and M =E (1-&) mAR

From the above, we get

& = i and 4 :i M+ﬂ (6.63e)
AER AELR mR

Substitution of the values of Equation (6.63e) into Equation (6.63a) gives an expression for
the tangential stress in a curved beam subject to pure bending.
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M

Therefore, op= — 1+L (6.64)
AR m(R +y)

The above expression for oy is generally known as the "Winkler-Bach formula”. The

distribution of stress oy is given by the hyperbolic (and not linear as in the case of straight

beams) as shown in the Figure 6.11 (b).

In the above expression, the quantity m is a pure number, and is the property of each
particular shape of the cross-section. Table 6.1 gives the formula for m for various shapes of
the cross-section.
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Table 6.1. Value m for various shapes of cross-section

Cross-section

Formula for ‘m’

A
2 2
: c C __ R\_,(R R)_
! : " 1+2(C) Z(C) (C .
ER R
B l
“C. _ 2R
i
R _
c | by m=—1 + R/Ah {[b;h + (R + C,)(b — b,)]
. SRR
C _
‘R | HI For Rectangular Section: C=C; b=b,
: D For Triangular Section: b,=0
D 27 2
-
it: 1 m=—1 +%[t.1n (R+C,) +(b—1).1n
2 1 h
e | (R-C,)—b.n(R-C)]
N fi
R p—
E

m=-1+ %[bl.ln (R+C,) +(t—b).1n

(R+Cy) +(b-1).1n(R-C,) —b.1n (R - C)]
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Sign Convention
The following sign convention will be followed:
1. A bending moment M will be taken as positive when it is directed towards the concave

side of the beam (or it decreases the radius of curvature), and negative if it increases the
radius of curvature.

2.'y" is positive when measured towards the convex side of the beam, and negative when
measured towards the concave side (or towards the centre of curvature).

3. With the above sign convention, if o, is positive, it denotes tensile stress while negative
sign means compressive stress.

The distance between the centroidal axis (y = 0) and the neutral axis is found by setting the
tangential stress to zero in Equation (5.15)

M
SR | R

AR m(R +y)

Yn

m(R - yn)
where y, denotes the distance between axes as indicated in Figure 5.2. From the above,
= MR
" (m+1)
This expression is valid for pure bending only.
However, when the beam is acted upon by a normal load P acting through the centriod of
cross-sectional area A, the tangential stress given by Equation (5.15) is added to the stress
produced by this normal load P. Therefore, for this simple case of superposition, we have

=MbY (6.65)
A AR m(R +y)

or 1=-

As before, a negative sign is associated with a compressive load P.

6.3.3 STRESSES IN CLOSED RINGS

Crane hook, split rings are the curved beams that are unstrained at one end or both ends. For
such beams, the bending moment at any section can be calculated by applying the equations
of statics directly. But for the beams having restrained or fixed ends such as a close ring,
equations of equilibrium are not sufficient to obtain the solution, as these beams are statically
indeterminate. In such beams, elastic behaviour of the beam is considered and an additional
condition by considering the deformation of the member under given load is developed as in
the case of statically indeterminate straight beam.
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Now, consider a closed ring shown in figure 6.12 (a), which is subjected to a concentrated
load P along a vertical diametrical plane.

Figure 6.12 Closed ring subjected to loads

The distribution of stress in upper half of the ring will be same as that in the lower half due
to the symmetry of the ring. Also, the stress distribution in any one quadrant will be same as
in another. However, for the purposes of analysis, let us consider a quadrant of the circular
ring as shown in the Figure 6.12 (c), which may be considered to be fixed at the section BB
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. : . P :
and at section AA subjected to an axial load k) and bending moment M ,. Here the

magnitude and the sign of the moment M , are unknown.

Now, taking the moments of the forces that lie to the one side of the section, then we get,
M, =-M, +;(R—x)

But from Figure, x = Rcosé

“M_ =-M, +;(R —Rcos6)

"M, :—MA+%(1—COS¢9) (a)

The moment M, at the section MN cannot be determined unless the magnitude of M , is

n

. P .
known. Resolving k) into normal and tangential components, we get
. . . 1
Normal Component, producing uniform tensile stress =N = 5 Pcoso

Tangential component, producing shearing stress= T = % Psing
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Determination of M,

Figure 6.13 Section PQMN

Consider the elastic behavior of the two normal sections MN and PQ, a differential distance
apart. Let the initial angle d@ between the planes of these two sections change by an
amount Ad6 when loads are applied.

Therefore, the angular strain = @ = Adleg
i.e., Add0 = w do.

Therefore, if we are interested in finding the total change in angle between the sections, that

makes an angle 6,and 6, with the section AA, the expression J:la) d o will give that angle.

But in the case of a ring, sections AA and BB remain at right angles to each other before and
after loading. Thus, the change in the angle between these planes is equal to zero. Hence

jo%co do=0 (b)
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2
M
In straight beams the rate of change of slope of the elastic curve is given by 3 2/ = E
X

A
Whereas in initially curved beam, the rate of change of slope of the elastic curve is —Rgz ,

which is the angle change per unit of arc length.

Now, —— = = = — = — ™ for curved beams
Rd6 R El El
RM,,
Or w=
El

Substituting the above in equation (b), we get

~R.M
[22Mm 49— 0

o EI

since R, E and | are constants,

j} M_d6=0

From Equation (a), substituting the value of M, we obtain
—LZM ,do +%PRI§d0—%PRLZcos0d9 =0

Integrating, we get

~-M,[6] +%PR[@]§ —% PR[sin6]z =0

M E) e Lpr(E ) Lpg(sinE =0
2) 2 \2) 2 2

Thus M , :%[1—EJ
T

Therefore, knowing M ,, the moment at any section such as MN can be computed and then
the normal stress can be calculated by curved beam formula at any desired section.

10
Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module6/Lesson3

6.3.4 NUMERICAL EXAMPLES

Example 6.1
Given the following stress function

) :Erecose
T

Determine the stress components o, ,0, and z,,

Solution: The stress components, by definition of ¢, are given as follows

1N\op (1)d% .
= —|—4+| —
o [rj or (eraez ®
82¢ ..
_ve i
or? a
(109 (1) 0%
Fro _[rzjae [rjarae (i)
The various derivatives are as follows:
op P

— =—@cosO
or =«

2
aq25=0
or

% :Er(—esin9+cose)
00 r«

Oy

2
0 qi __P r(6cosé +2sind)
00 T

2
o9 :E(—Hsin0+cose)
ool &

Substituting the above values in equations (i), (ii) and (iii), we get

o, = (EJEH cosé —(%)E r(6 cosd +2sino)

r)o T
:[EJEHCOSH—(EJEHCOSH—[EJEZSMQ
r)z r)n r)z
Lo, =—§Esin0
rr
029
%0 = o7 =0
11
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T,y = [izji r(~@sing + cos@)—GjE(—HsinH +c0s6)

r’)m 3
STy =0

Therefore, the stress components are

o, = —[EJESin 0
r)n

o,=0
Ty =0
Example 6.2

A thick cylinder of inner radius 10cm and outer radius 15cm is subjected to an internal
pressure of 12MPa. Determine the radial and hoop stresses in the cylinder at the inner
and outer surfaces.

Solution: The radial stress in the cylinder is given by
_(Ppa®-pb®) (P -p,)\a’h’

Or = b2 — 32 b2 — 32 r2

The hoop stress in the cylinder is given by

o= [ PR = Pb% ) (P =, )&%’

b? —a? b*>—a*) r?
As the cylinder is subjected to internal pressure only, the above expressions
reduce to

_( pa’ p,\a’h’
T br-a?) \bP-a?) r?

_( pa’ P )a’h?
and oy = (bz —aZ]J{bZ—aZJ 2

Stresses at inner face of the cylinder (i.e., at r = 10 cm):

Radial stress = o, = | __12x(0.D)* | |(0.15)°(0.)* 12
(0.15)* - (0.1)° (0.2)2 (0.15)% - (0.1)°

=96-21.6
or oy =-12 MPa

12
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Hoop stress = o, = { 12x(0.0)° }r[ 12 } {(0-15)2(0-1)2}

(0.15)2 - (0.1)2 | | (0.15)% —(0.1)? (0.2)2
=90.6+21.6
or o,=31.2 MPa

Stresses at outerface of the cylinder (i.e., at r = 15 cm):

Radial stress = o, = | __12x(0.D)° | 12 (0.1)%(0.15)?
(0.15)* — (0.1)? (0.15)* — (0.1)? (0.15)

=0

Hoop stress = 6, = { 12x(0.0)* }{(0.1)2(0.15)2} { 12 }
(0.15)2 —(0.1)° (0.15)° (0.15)% —(0.1)°

=96+96
or o0p,=19.2 MPa

Example 6.3

A steel tube, which has an outside diameter of 10cm and inside diameter of 5cm, is
subjected to an internal pressure of 14 MPa and an external pressure of 5.5 MPa.
Calculate the maximum hoop stress in the tube.

Solution: The maximum hoop stress occurs at r = a.

2 h2 o 22
Therefore, Maximum hoop stress = (Gg)max = { pia” = Pob }+{ i po} {a b }

bZ_aZ b2_a2 2

a
pa‘-pb®| [p-p
:{ bz—ag }{bz—ag}bz
_ p;a®— pb® + p;b® — pyb?

b? —a?

(a®+b?*)—2p,b®
(Ge)max - pl( b2 _)a2 pO

2 2 2
Therefore, (Gom = 14[(0.05) +(o.21) ]—2><25.5><(0.1)
(0.1)* - (0.05)

Or (O9)max = 8.67 MPa

13
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Example 6.4

A steel cylinder which has an inside diameter of 1m is subjected to an internal pressure
of 8 MPa. Calculate the wall thickness if the maximum shearing stress is not to exceed
35 MPa.

Solution: The critical point lies on the inner surface of the cylinder, i.e., at r = a.

pia” = pob® | [ pi—p, |@’h’
bZ _ aZ bZ _ aZ r.2

We have, Radial stress = o; = {

Atr=aand p, =0,

_ | pa*-0 p, —0 ]a’b?
T e || b oat | &

_ pia2 - pib2
© pr-a?
_—p,(b*-2a’)
(b® -a?)
Therefore, o, = — p;
Similarly,
B 2 2 o 2|2
Hoop stress = 0, = piZZ _sgb }+[§; - zg } ar?

Atr=aand p, =0,

| pa®-0] [ p,—0 ]a’v?
0-9_{b2_a2}+ _ 2j| 2

_ p,(@%+b?)
(b2 -a?)

Here the maximum and minimum stresses are

0

O'3=—pi andO';L:Gg

, 1
But the maximum shear stress = 7ya = E(al - 03)

e

i.6. Tnax =

14
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_ 1 pa’+pb®+pb’-pa’

2 (b2 -a?)
35 PO
(b* —a%)
2
e, 35= XD
(b”-a’)

35b*-35a” = 8b?
35b*-8b* = 35a’

35b%-8b*=35(0.5)*
Therefore, b = 0.5693

If tis the thickness of the cylinder, then
b=0.5+1t=0.5693

S.1=0.0693 m or 69.3 mm.

Example 6.5

Module6/Lesson3

The circular link shown in Figure 6.14 has a circular cross-section 3cm in diameter.
The inside diameter of the ring is 4cm. The load P is 1000 kg. Calculate the stress at A
and B. Compare the values with those found by the straight beam formula. Assume
that the material is not stressed above its elastic strength.

Solution:

. p/s
Cross-sectional area = A= 2 (3)* = 7.06 cm?.

For circular cross-section m is given by

o) o2

Here R=2+15=3.5¢cm
c=15cm. (Refer Table 6.1)

Therefore,
2 2
n=_1.935) o35} )(35)
1.5 1.5 15
m = 0.050

15
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At section AB, the load is resolved into a load P and a bending couple whose moment is
positive. The stress at A and B is considered to be the sum of the stress due to axial load P,
and the stress due to the bending moment M.

Therefore, Stress at point A is

O'OA—O_A— E+ﬂ 1+L
A AR m(R+y,)

_ 1000 (35x1000)[, ~  (-15)
706 7.06x3.5 | 0.050(3.5-1.5)
Or oa = -2124.65 kg/cm? (compressive).

The stress at point B is given by

A AR m(R+ yg
— —1000 3500 15
= + 1+
7.06 7.06x3.5 0.050(3.5+1.5)

. og = 849.85 kg/cm?® (Tensile)

Comparison by Straight Beam Formula
The moment of inertia of the ring cross-section about the centroidal axis is
-’ _7(@®)"
64 64
If the link is considered to be a straight beam, the corresponding values are
P M
L.
A

~ 1000  (+3500)(-15)
7.06 3.976

. op = -1462.06 kg/cm® (compressive)

& .= —1000  3500x1.5
OB = +
7.06 3.976

op = 1178.8 kg/cm? (tensile)

| =3.976cm*

On

16
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4 o |«— Straight beam
o % _ Centroid axis | Curved beam
d __ . _ Neutral axis _
/
Y oY%
N>
A"1462.06
2124.65
Figure 6.15 Stresses along the cross-section
Example 6.6

An open ring having T-Section as shown in the Figure 6.16 is subjected to a
compressive load of 10,000 kg. Compute the stresses at A and B by curved beam

formula.

2cm
P=10,000Kg e ' <«
A

Y

14cm -

/ $ 10.34cm

wooT

A

Figure 6.16 Loaded open ring

17
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Solution:
Area of the Section = A =2x 10 + 2 x 14 = 48 cm?

The value of m can be calculated from Table 6.1 by substituting b; = 0 for the unsymmetric
I-section.

From Figure,

R = 18+5.66 = 23.66 cm

Cc; =c3=10.34cm

c, =3.66 cm, ¢ = 5.66 cm

t=2cm

b;=0,b=10cm

m is given by

m =—1+%[bl.In(R+cl)+(t—bl).In(R+c3)+(b—t).In(R—c2)—b.ln(R—c)]

23.66
48

Therefore, m = 0.042

Now, stress at A,

=1+ [0+(2-0)In(23.66 +10.34) + (10 - 2)In(23.66 — 3.66) — 101n(23.66 — 5.66)]

O'A=E+ﬂ 1+L
A" ARl m(R+y,)

_ 10000  (10000x23.66)[, (~5.66)
48 48x23.66 0.042(23.66 — 5.66)

.. o = -1559.74 kg/cm? (compressive)

Similarly, Stress at B is given by

o—B=E+M 14— Js
A AR m(R+y;g)

_ 10000 N 10000 x 23.66 14 10.34
48 48 x 23.66 0.042(23.66 +10.34)

. o = 1508.52 kg/cm?” (tensile)

18
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Example 6.7
A ring shown in the Figure 6.17, with a rectangular section is 4cm wide and 2cm thick.

It is subjected to a load of 2,000 kg. Compute the stresses at A and B and at C and D by
curved beam formula.

P=2000kg

2cm

¥

le—— 4cm —>

Cross section

Figure 6.17 Loaded ring with rectangular cross-section
Solution: Area of the section A=4x2 =8cm?

The Radius of curvature of the centroidal axis = R =4+ 2 = 6¢cm.
From Table 6.1, the m value for trapezoidal section is given by,

m- —1+%{[blh+(R+cl)(b-bl)]|n[R”l]—(b—bl)h}

R-c

But for rectangular section, ¢ =c,,b =b,,

Therefore m = -1+ %{[bh +(R+c)0)]In [ E - Cj - (O)}

m:_1+&L4{[zx4+(6+2)(0)]m[2i—§j}

Therefore m=0.0397

Now, stressat A=o , :E M {1+ ( Ya }
m

+
A AR R+y,)
2000 2000x6 (-2)
=— + 1+
8 8x6 0.0397(6-2)

..o, = —3148.6kg / cm* (Compression)

19
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P M
Stressat B=o, =— {1+ ( Ye }
m

+
A AR R+Ysg)
—2000 2000x6 2
= + 1+
8 8x6 { 0.0397(6+2)}

Therefore, oy, = +1574.31kg /cm? (Tension)

To compute the stresses at C and D

Figure 6.18

At section CD, the bending moment, M = PR cos30°

i.e., M =2000x6xcos30°

=10392kg —cm
Component of P normal to CD is given by,

N = Pcos30° = 2000¢cos30° =1732kg.

Therefore, stressat C = o, = ﬂ+ M 1+ Ya
A AR|" m(R+y,)

~1732 10392 (-2)
= + 1+
8 8x6 | 0.0397(6-2)

.o, =—2726.7kg/cm? (Compression)

Stress at D:GD:%"'L/IR {1+ (Rys J
MR+ Ye

20
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~1732 10392 2
= + 1+
8 8x6 { 0.0397(6 + 2)}

Therefore, o, =1363.4kg/cm?® (Tension)

Example 6.8
The dimensions of a 10 tonne crane hook are shown in the Figure 6.19. Find the
circumferential stresses o, and o, on the inside and outside fibers respectively at the

section AB.
« YB—>:<—Y >

3cm () 9cm

«— 12cm ———»

Section AB
Figure 6.19 Loaded crane hook

Solution: Area of the section = A = 9+3 x12 = 72cm?

12 2
Now, y, =— 9+2x3)_ scm.

3L 9+3

Therefore y, = (12-5)=7cm.
Radius of curvature of the centroidal axis = R =7 +5=12cm.
For Trapezoidal cross section, m is given by the Table 6.1 as,

12 12+7
m=-1+ 3x12)+(12+7)9-3)}In —-(9-3J12

ez ne-an( 247022

..m=0.080

Moment =M = PR =10,000x12 =120000kg —cm
Now,

StressatA:aA:E+M 14— Ya
A ARL m(R+y,)

21
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—10000 120000 (-5)
= + 1+
72 72x12|" 0.08(12-5)

o, =—1240kg / cm? (Compression)

Stressat B =0, :%+ IZ/IR {1+ m(RyB , )}
+ B

~10,000 . 120000 7
= + 1+
72 72x12|" 0.08(12+7)

oy =639.62kg / cm? (Tension)

Example 6.9

A circular open steel ring is subjected to a compressive force of 80 kN as shown
in the Figure 6.20. The cross-section of the ring is made up of an unsymmetrical
I-section with an inner radius of 150mm. Estimate the circumferential stresses
developed at points A and B.

W

l«—R

Figure 6.20 Loaded circular ring with unsymmetrical I-section

22
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Solution:
From the Table 6.1, the value of m for the above section is given by
m= —1+%[b1 In(R+c,)+(t—b)In(R+c,)+(b—t)In(R-c,)-bIn(R-c)|

Hence R = Radius of curvature of the centroidal axis.

Now, A =20x100+120x 20+ 80 x 20 = 6000mm*®

=75.33mm.

(100x 20x10)+ (120 x 20 x 80) + (80 x 20 x150)
Yo = 6000

-y, = (160 -75.33)=84.67mm,

Also, R = (150 + 75.33) = 225.33mm.

, 225.33 [80 In(225.33+84.67) + (20 — 80)In(225.33 + 64.67)1
6000 | (100 - 20)In(225.33 - 55.33)-1001n(225.33 — 75.33)

-.m=0.072.

Moment =M = PR =80x1000 x 225.33 =1.803x10" N — mm.

Now, Stress at point B = o :%Jr%[br%}
m(R + yg

, _ 80000  1.803x10" | (-75.33)
® 6000 6000x225.33|  0.072(225.33—75.33)

.oy =—93.02N /mm?(Compression)

P M
Stress at point A=o0, =— {1+ (L}
m

+ _
A AR R+Y,)
_ 80000 ~ 1.803x10" |, 84.67
6000 6000x225.33|  0.072(225.33+84.67)

.o, =50.6 N/mm? (Tension)
Hence, the resultant stresses at A and B are,

o, =50.6N/mm? (Tension), o, =-93.02 N/mm?(Compression)
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Example 6.10

Calculate the circumferential stress on inside and outside fibre of the ring at A and B,
shown in Figure 6.21. The mean diameter of the ring is 5cm and cross-section is circular
with 2cm diameter. Loading is within elastic limit.

2P=1000kg

Figure 6.21 Loaded closed ring
Solution: For circular section, from Table 6.1

2 4]
- 2(215j 2(215j (215} -

.. m=0.0435
We have, M , = PR(l—EJ

T
=0.364PR =0.364x2.5P

~ M, =091P

o, ={ )+ 5 {“ o yAJ
(Aj 231:5{ +0.043(5_(;.)5—1)}

&)l
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SOp :—6.21[%j (Compressive)
P M y
= — 1 0
T (Aj+ AR{ TR+ ys)}

P) 091P 1
=——= |t 1+
(Aj Ax2.5{ o.o435(2.5+1)}

P
=1.755 — | (Tension
on (Aj (Tension)

Similarly, My = (M A~ PR)

=(0.364PR - PR) = -0.636 PR
=-0.636x2.5P
My =-159P

Now,a.zMB 14—
" AR|T m(R+y,)

_ 1.59P{1 (-1) }

— +
Ax25|" 0.0435(2.5-1)

SO = 9.11[%) (Tension)

( 1.59P ) (+1)
and og, =— 1+ —————
Ax25 0.0435(2.5+1)

= —4.81[%) (Compression)

Now, substituting the values of P = 500kg,

A= 7(1)* =3.14159cm?, above stresses can be calculated as below.

500

o, :—6.21><7:—988kg/cm2
Op =1'755X57[ﬂ= 279.32kg / cm?
oy :9.11><5:—0:1450kg/cm2

op, = —4.81><5ﬂﬂ = -765.54kg /cm®
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Example 6.11
A ring of 200mm mean diameter has a rectangular cross-section with 50mm in the
radial direction and 30mm perpendicular to the radial direction as shown in Figure

6.22. If the maximum tensile stress is limited to 120 N /mm?, determine the tensile
load that can be applied on the ring.

«— Y, —><—Y;—>

Secfion AB

Figure 6.22 Closed ring with rectangular cross-section

Solution: R =100mm, Area of cross-section = A = 30 x 50 = 1500 mm?
From Table 6.1, the value of m for the rectangular section is given by

m=—14—0 [30x50 +0]In 100+25) 4
1500 x 50 100-25

-.m=0.0217
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Tofind M 5

Figure 6.23

The Bending moment at any section MN can be determined by

My =M g +V?(1—c059)

~JAtO=0, M, =-M,
But M, :Vﬁ(l—gj
2 V4
"M, = Vx100 (1-% ~18.17W
2 4

M
Now, aA:E+ All+ Ya
A AR|T mR+y,)

_W + M, 14— I
2A AR|" m(R+y,)
W (-18.17W) (- 25)
= + 1+
2x1500 1500x100 |~ 0.0217(100 - 25)
-0, =0.002073W (Tensile)

and ch=£+|\/IA 1+ Js
A AR|"T mR+y,)
w 18.17W

25
= — +
2x1500 1500100 { 0.0217(100 + 25)}
~.og =—0.00090423W (Compression)
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To find stresses at C and D
We have, M =—-M . +W—;(1—0059)

AALO=90°, M. =M =M, + R

2
S M =-18.17W +W x% =31.83W

M
Now, stressat C = o = E+ o1, Yo
A AR m(R +y,)
o, 3183w [ (- 25)
1500 %100 0.0217(100 - 25)
=—0.00305W (Compression)

M
and stressat D = o, P Mooy Yo
A AR [ m(R+ys,)
31.83W

.\ .\ 25
1500100 { 0.0217(100 + 25)}
~.op =0.00217W (Tensile)

By comparison, the tensile stress is maximum at Point D.

-.0.00217W =120  ..W =55299.54N or 55.3kN

Example 6.12

A ring of mean diameter 100mm is made of mild steel with 25mm diameter. The ring is
subjected to four pulls in two directions at right angles to each other passing through
the center of the ring. Determine the maximum value of the pulls if the tensile stress

should not exceed 80 N / mm?
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Figure 6.24 Closed ring with circular cross-section

Solution: Here R =50mm

From Table 6.1, the value of m for circular section is given by,

S RCIE

2 2
B < Y B L
125 125 )\\125

-.m=0.016
Area of cross-section = A = 7(12.5)° = 490.87 mm?

We have, M , = W—;(l—gJ
T

=ﬂx50(1—£j
2 /s

M, =9.085W

Now, aA=E+NIA 14— I
A AR|" m(R+y,)
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__W 908w [, (-12.5)
 2x490.87 490.87x50| 0.016(50-12.5)

=0.0084W (Tensile)

SOg :%+( MA??] 14— I8
- m(R+yB)

3 W _9.085W N 125
2x490.87 490.87 x50 0.016(50 + 12.5)
-0y =—0.00398W (Compression)

Also, M, =(M, —PR)= [— 9.085+W? ><50j

- M, = +15.915W

CD yC

Now, o = M 1+
AR | m(R-yc)

15.918W (-12.5)
+ 1+
490.87x50| " 0.016(50 -12.5)

-.o. =-0.013W (Compression)

15.918W 12.5
and op =+ +
490.87 x50 0.016(50 + 12.5)

= 0.0088W (Tension)

Stresses at Section CD due to horizontal Loads

We have, moment at any section MN is given by

M :—MA+?(1—0059)
At section CD, 6 =0,
~Meg =-M, +W?R(1—coso)

M, =—M, = —9.085W
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.'.<7C=E+NICD 1+ Je
A AR m(R +y,)

W +(—9.085\/\/) L (-12.5)
2x490.87 490.87x50|  0.016(50 -12.5)

-.oc =0.00836W (Tensile)

M
and o P Moy, Yo
A AR m(R+y,)

W +(—9.085\/\/)'1+ 12.5
2x490.87 490.87x50| 0.016(50+12.5)

-.op =—0.00398W (Compression)
Resultant stresses are
o. =(~0.013W +0.00836W ) = —0.00464W (Compression)

o =(0.0088W —0.00398W ) = 0.00482W (Tension)

In order to limit the tensile stress to 80 N /mm? in the ring, the maximum value of the force
in the pulls is given by

0.00482w = 80
W =16597.51N or 16.598 kN

6.3.5 EXERCISES

1. Is the following function a stress function?

= —(E)re sin@
T

If so, find the corresponding stress. What is the problem solved by this function?

2. Investigate what problem of plane stress is solved by the following stress
functions

(a) ¢:%r93in9

(b) ¢ __Prosine
T

3. Derive the equilibrium equation for a polar co-ordinate system.
4. Derive the expressions for strain components in polar co-ordinates.
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. Starting from the stress function ¢ = Alogr +Br®logr +Cr?D, obtain the stress
components o, and o, in a pipe subjected to internal pressure p, and external pressure
P, . Obtain the maximum value of o, when p, = 0and indicate where it occurs.

6. Check whether the following is a stress function

. Starting from the stress function ¢ =C, + —

¢ =c|r’(@—0)+r?—r?cos? 0 tana | where a is a constant.

C,_B+u), C’r®, derive expressions for

r
o, and o, in case of a rotating disk of inner radius 'a’ and outer radius 'b". Obtain the

maximum values of o, and o,,.

. Show that the stress function ¢ = Alogr + Br?logr +Cr? + D solves the problem of

axisymmetric stress distribution, obtain expressions for o, and o,in case of a pipe

subjected to internal pressure p; and external pressure p, .

9.

10

11.

12.

13.

14.

15.

16.

17.

Show that the following stress function solves the problem of axisymmetric stress
distribution in polar coordinates
¢ = Alogr+Br?logr+Cr? +D

. Explain axisymmetric problems with examples.
Derive the general expression for the stress function in the case of axisymmetric stress

distribution.

Derive the expression for radial and tangential stress in a thick cylinder subjected to
internal and external fluid pressure.

A curved bar bent into a arc of a circle having internal radius ‘a’ and external radius
‘b’ is subjected to a bending couple M at its end. Determine the stresses

o,,0pand 7.

For the stress function, ¢ = Ar’logr, where A is a constant, compute the stress
components o,,c,and 7, .

A thick cylinder of inner radius 150mm and outer radius 200mm is subjected to an
internal pressure of 15MN/m?. Determine the radial and hoop stresses in the cylinder at

inner and outer surfaces.
The internal and external diameters of a thick hollow cylinder are 80mm and 120mm

respectively. It is subjected to an external pressure of 40MN/m?, when the internal
pressure is 120MN/m?. Calculate the circumferential stresses at the external and internal
surfaces and determine the radial and circumferential stresses at the mean radius.

A thick-wall cylinder is made of steel (E = 200GPa and v =0.29), has an inside
diameter of 20mm, and an outside diameter of 100mm. The cylinder is subjected to an
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internal pressure of 300MPa. Determine the stress components o,and o, at

r=a=210mm, r = 25mm and r = b = 50mm.

18. A long closed cylinder has an internal radius of 200mm and an external radius of 250mm.
It is subjected to an internal pressure of 80MPa. Determine the maximum radial,
circumferential and axial stresses in the cylinder.

19. A solid disc of radius 200mm is rotating at a speed of 3000 rpm. Determine the radial and
hoop stresses in the disc if v =0.3and p = 8000kg/m3. Also determine the stresses in

the disc if a hole of 30mm is bored at the centre of the disc.

20. A disc of 250mm diameter has a central hole of 50mm diameter and runs at 4000rpm.
Calculate the hoop stresses. Take v = 0.25and p = 7800 kg/m°.

21. A turbine rotor 400mm external diameter and 200mm internal diameter revolves at
1000rpm. Find the maximum hoop and radial stresses assuming the rotor to be thin disc.
Take the weight of the rotor as 7700 kg/m3 and poisson’s ratio 0.3.

22. Investigate what problem of plane stress is solved by the following stress function

3F xy*| P, o .
o= 4—{xy —3(:—2} + B y“. Check whether the following is a stress function

¢ :(Ar2 +Br? +%+ DJCOSZH
r

23. Show that [Aeo‘y +Be™ +Cye” + Dye™ ]sin oX represents stress function.

24. The curved beam shown in figure has a circular cross-section 50mm in diameter. The
inside diameter of the curved beam is 40mm. Determine the stress at B when
P = 20kN .

Figure 6.25

25. A crane hook carries a load W = 20kN as shown in figure. The cross-section mn of the
hook is trapezoidal as shown in the figure. Find the total stresses at points m and n. Use

the data as given b, =40mm, b, =10mm, a=30mm and ¢=120mm
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Figure 6.26

26. A semicircular curved bar is loaded as shown in figure and has a trapezoidal cross-
section. Calculate the tensile stress at point A if P = 5kN

—> 20mm «—

— 20mm <«

{
1

----40mm--

1
1

1

1

1

1
1
1

1

1
1

1
1

k

Figure 6.27
27. A curved beam with a circular centerline has a T-section shown in figure below. It is

subjected to pure bending in its plane of symmetry. The radius of curvature of the
concave face is 60mm. All dimensions of the cross-section are fixed as shown except the

thickness t of the stem. Find the proper value of the stem thickness so that the extreme
fiber stresses are bending will be numerically equal.
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;|
rl

60mm

20mm

<«——80mm——> T

Figure 6.28

28. A closed ring of mean diameter 200mm has a rectangular section 50mm wide by a 30mm
thick, is loaded as shown in the figure. Determine the circumferential stress on the inside

and outside fiber of the ring at A and B. Assume E = 210kN / mm?

S50KN

S0KN

Figure 6.29

29. A hook has a triangular cross-section with the dimensions shown in figure below.
The base of the triangle is on the inside of the hook. The load of 20kN applied along a

line 50mm from the inner edge of the shank. Compute the stress at the inner and
outer fibers.
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50mm -

\ 4

65mm

A

Figure 6.30

30. A circular ring of mean radius 40mm has a circular cross-section with a diameter of
25mm. The ring is subjected to diametrical compressive forces of 30kN along the
vertical diameter. Calculate the stresses developed in the vertical section under the
load and the horizontal section at right angles to the plane of loading.
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